Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation

نویسندگان

  • Tamar R. Makin
  • Jan Scholz
  • David Henderson Slater
  • Heidi Johansen-Berg
  • Irene Tracey
چکیده

The role of cortical activity in generating and abolishing chronic pain is increasingly emphasized in the clinical community. Perhaps the most striking example of this is the maladaptive plasticity theory, according to which phantom pain arises from remapping of cortically neighbouring representations (lower face) into the territory of the missing hand following amputation. This theory has been extended to a wide range of chronic pain conditions, such as complex regional pain syndrome. Yet, despite its growing popularity, the evidence to support the maladaptive plasticity theory is largely based on correlations between pain ratings and oftentimes crude measurements of cortical reorganization, with little consideration of potential contributions of other clinical factors, such as adaptive behaviour, in driving the identified brain plasticity. Here, we used a physiologically meaningful measurement of cortical reorganization to reassess its relationship to phantom pain in upper limb amputees. We identified small yet consistent shifts in lip representation contralateral to the missing hand towards, but not invading, the hand area. However, we were unable to identify any statistical relationship between cortical reorganization and phantom sensations or pain either with this measurement or with the traditional Euclidian distance measurement. Instead, we demonstrate that other factors may contribute to the observed remapping. Further research that reassesses more broadly the relationship between cortical reorganization and chronic pain is warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network-level reorganisation of functional connectivity following arm amputation

One of the most striking demonstrations of plasticity in the adult human brain follows peripheral injury, such as amputation. In the primary sensorimotor cortex, arm amputation results in massive local remapping of the missing hands' cortical territory. However, little is known about the consequences of sensorimotor deprivation on global brain organisation. Here, we used resting-state fMRI to i...

متن کامل

Cortical reorganization after macroreplantation at the upper extremity: a magnetoencephalographic study.

With the development of microsurgical techniques, replantation has become a feasible alternative to stump treatment after the amputation of an extremity. It is known that amputation often induces phantom limb pain and cortical reorganization within the corresponding somatosensory areas. However, whether replantation reduces the risk of comparable persisting pain phenomena as well as reorganizat...

متن کامل

Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention

Currently, hand rehabilitation following stroke tends to focus on mildly impaired individuals, partially due to the inability for severely impaired subjects to sufficiently use the paretic hand. Device-assisted interventions offer a means to include this more severe population and show promising behavioral results. However, the ability for this population to demonstrate neural plasticity, a cru...

متن کامل

Phantom pain is associated with preserved structure and function in the former hand area

Phantom pain after arm amputation is widely believed to arise from maladaptive cortical reorganization, triggered by loss of sensory input. We instead propose that chronic phantom pain experience drives plasticity by maintaining local cortical representations and disrupting inter-regional connectivity. Here we show that, while loss of sensory input is generally characterized by structural and f...

متن کامل

SENSORIMOTOR CONTROL OVER FUSIMOTOR NEURONS OF THE TENUISSIMUS MUSCLE IN THE A NESTHETIZED CAT: A QUALITATIVE PRIMARY AFFERENT RECORDING

Cortical control of the sensory output of muscle spindles was studied in thirteen anesthetized cats in the present experiment. Gamma motoneuron activity was monitored during electrical stimulation of the sensorimotor cortex while recording from single primary afferents from the tenuissimus muscle. Findings are as follows: 1. The state of anesthesia is crucial in obtaining reproducible resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2015